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Abstract Amyotrophic lateral sclerosis (ALS) is the third
most common human adult-onset neurodegenerative disease.
Some forms of ALS are inherited, and disease-causing genes
have been identified. Nevertheless, the mechanisms of neuro-
degeneration in ALS are unresolved. Genetic, biochemical,
and morphological analyses of human ALS as well as cell and
animal models of ALS reveal that mitochondria could have
roles in this neurodegeneration. The varied functions and
properties of mitochondria might render subsets of selectively
vulnerable neurons intrinsically susceptible to cellular aging
and stress and overlying genetic variations. Changes occur in
mitochondrial respiratory chain enzymes and mitochondrial
programmed cell death proteins in ALS. Transgenic mouse
models of ALS reveal possible principles governing the
biology of neurodegeneration that implicate mitochondria and
the mitochondrial permeability transition pore. This paper
reviews how mitochondrial pathobiology might contribute to
the mechanisms of neurodegeneration in ALS.
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Voltage-dependent anion channel

Synposis of human ALS

ALS is a progressive and severely disabling neurological
disease in humans characterized by initial muscle weakness,

and thenmuscle atrophy, spasticity, and eventual paralysis and
death typically 3 to 5 years after diagnosis (Rowland and
Shneider 2001). The cause of the spasticity, paralysis and
death is progressive degeneration and elimination of upper
motor neurons in cerebral cortex and lower motor neurons in
brainstem and spinal cord (Fig. 1) (Rowland and Shneider
2001; Sathasivam et al. 2001). Degeneration and loss of
spinal and neocortical interneurons also occur in human ALS
(Stephens et al. 2006; Maekawa et al. 2004). More than
5,000 people in the USA are diagnosed with ALS each year
(ALS Association, http://www.alsa.org), and, in parts of the
United Kingdom, three people die every day from some
form of motor neuron disease (http://www.mndassociation.
org). Other than life support management, no effective
treatments exist for ALS (Zoccolella et al. 2009).

It is still not understood why specific neuronal populations
are selectively vulnerable in ALS, such as certain somatic
motor neurons and interneurons (Rowland and Shneider 2001;
Sathasivam et al. 2001; Martin 2010a). The molecular
pathogenesis of ALS is understood poorly, contributing to
the lack of appropriate target identification and effective
mechanism-based therapies to treat even the symptoms of this
disease. At least two forms of ALS exist: idiopathic (sporadic)
and heritable (familial). Most people with ALS have no
known genetic contributions and are designated sporadic.
Aging is a strong risk factor for ALS because the average age
of onset is 55 (ALS Association, www.alsa.org). Familial
forms of ALS have autosomal dominant or autosomal recessive
inheritance patterns andmake up ~10% or less of all ALS cases.
ALS-linked mutations occur in the genes (Table 1) encoding
SOD1 (ALS1), Alsin (ALS2), senataxin (ALS4), fused in
sarcoma (FUS, ALS6), vesicle associated membrane protein
(VAMP/synaptobrevin)-associated protein B (VAPB, ALS8),
p150 dynactin (DCTN1), TAR-DNA binding protein (TADBP
or TDP43, ALS10) and optineurin (ALS12) (Deng et al. 1993;
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Schymick et al. 2007; Kabashi et al. 2008; Vance et al. 2009;
Maruyama et al. 2010). Variations in the phosphoinositide
phosphatase FIG4 gene cause ALS11 (Chow et al. 2009).
Several other genes are believed to be susceptibility factors for
ALS (Table 1) (Saeed et al. 2006; Elden et al. 2010).

Evidence for mitochondrial dysfunction in human ALS

Human ALS is associated with mitochondrial abnormalities.
Structural abnormalities in mitochondria are seen by electron

microscopy (EM) in skeletal muscle, liver, spinal motor
neurons and motor cortex of ALS patients (Sasaki and Iwata
1999; Menzies et al. 2002). A mutation in cytochrome c
oxidase subunit I was found in a patient with a motor neuron
disease phenotype (Comi et al. 1998). Another patient with
motor neuron disease had a mutation in a mitochondrial
tRNA gene (Borthwick et al. 2006). One type of mitochon-
drial DNA (mtDNA) mutation, called the common mtDNA
deletion (mtDNA4977), is found non-uniformly within
different human brain areas in aging; the highest levels are
detected in the striatum and substantia nigra (Soong et al.

Fig. 1 Motor neurons in spinal cord degenerate in people with ALS. a
In normal control individuals, the anterior horns of the spinal cord
contain many large, multipolar motor neurons (large dark cells,
hatched arrows). b In ALS cases, the anterior horn is depleted of
large neurons (dark cell, hatched arrow) and remaining neurons are
atrophic. These attritional chromatolytic motor neurons display a dark
condensed nucleus as seen microscopically. Scale bar in A=76 μm
(same for b). c, d, and e Nissl staining shows that the degeneration of
motor neurons in human familial ALS is characterized by shrinkage
and progressive condensation of the cytoplasm and nucleus. The
motor neuron in c (arrow) appears normal. It has a large, multipolar
cell body and a large nucleus containing reticular network of
chromatin and a large nucleolus. Scale bar=7 μm (same for d,e).The
motor neuron in d (arrow) has undergone severe somatodentritic
attrition. The motor neuron in e is at near endstage degeneration
(arrow). The cell has shrunken to about 10% of normal size and has

become highly condensed. The cell in e is identified as a residual
motor neuron based the large nucleolus and residual large Nissl
bodies. f Cell death assays (e.g., TUNEL) identify subsets of motor
neurons in the process of DNA fragmentation. Nuclear DNA
fragmentation (brown labeling) occurs in motor neurons in people
with ALS as the nucleus condenses and the cell body shrinks. Motor
neurons in the somatodendritic attrition stage (Martin 1999) accumu-
late DNA double strand breaks. Scale bar=7 μm. g In individuals with
ALS, the tumor suppressor p53 accumulates in the nucleus (brown
labeling) of motor neurons. Scale bar=5 μm, h Degenerating motor
neurons in human ALS are immunopositive for cleaved caspase-3
(black-dark green labeling) in the somatodendritic attrition stage
(Martin 1999). Motor neurons show prominent accumulation around
the nucleus (pale circle) of discrete mitochondria (brown-orange labeling,
detected with antibody to cytochrome c oxidase subunit I) exhibiting
little light microscopic evidence for swelling. Scale bar=5 μm
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1992; Corral-Debrinski et al. 1992). However, no significant
accumulation of the 5 kb common deletion in mtDNA has
been found by single-cell analysis of motor neurons from
sporadic ALS cases compared to controls (Mawrin et al.
2004). Overall, there is a lack of strong direct evidence for
mitochondrial abnormalities participating in disease-causing
mechanisms of human ALS, despite many associational/
correlative data from human and animal/cell models.

Intracellular Ca2+ abnormalities and excitotoxicity are
suspected links to mitochondrial dysfunction and oxidative
stress in ALS (Beal 2002; Martin 2010a, b). Mitochondria
regulate cytoplasmic Ca2+ levels (Babcock and Hille 1998;
Nicholls 2002; Zorov et al. 2007). Electron microscopy on
skeletal muscle biopsies of people with sporadic ALS
shows changes indicative of elevated Ca2+ in motor neuron
terminals, with some mitochondria showing an augmented
Ca2+ signal (Siklos et al. 1996). Excitotoxicity has been
implicated in the pathogenesis of ALS for a long time
(Rothstein et al. 1992) and is another possible mechanism
of motor neuron damage in ALS (Heath et al. 2002; Martin
2010a). Many sporadic ALS patients have reduced levels of
synaptosomal high-affinity glutamate uptake (Rothstein et
al. 1992) and astroglial glutamate transporter EAAT2
(excitatory amino acid transporter 2 or GLT1) in motor
cortex and spinal cord (Rothstein et al. 1995). These

changes could likely be secondary; however, reductions in
levels of activity of EAAT2 in spinal cord might increase
the extracellular concentrations of glutamate at synapses on
motor neurons. Motor neurons might be particularly
sensitive to glutamate excitotoxicity because they have a
low proportion of GluR2-edited or under-edited AMPA
subtype glutamate receptor on their surfaces, predisposing
these cells to risk of excess Ca2+ entry and mitochondrial
perturbations (Heath et al. 2002; Kwak and Kawahara
2005). Cell culture studies show that excess glutamate
receptor activation in neurons can cause increased intracellular
Ca2+, enhanced mitochondrial reactive oxygen species
(ROS) production, bioenergetic failure, and mitochondrial
trafficking abnormalities (Chang and Reynolds 2006). Ca2+-
induced generation of ROS in brain mitochondria is
mediated by mitochondrial permeability transition (Hansson
et al. 2008). Motor neurons are particularly affected by
inhibition of mitochondrial metabolism which can cause
elevated cytosolic Ca2+ levels, excitability, and oxidative stress
(Bergmann and Keller 2004). Recent data have provided a
fresh prespective on ALS pathogenesis by demonstrating that
motor neurons in transgenic (tg) ALS mice have faulty
synaptic inhibition long before disease symptoms emerge,
suggesting that inhibitory glycine receptor and interneuron
abnormalities are upstream mechanisms while, possibly,

Table 1 Mutant/polymorphic genes linked to ALS

Locus Inheritance Gene Protein Name & Function

ALS1/21q22 autosomal dominant (adult onset) SOD1 Cu/Zn superoxide dismutase; dismutation of supeoxide

ALS2/2q33.2 autosomal recessive (juvenile
onset primary lateral sclerosis)

Alsin Alsin/guanine exchange factor for RAB5A and Rac1

ALS4/9q34 autosomal dominant (adult onset) SETX Senataxin/helicase; RNA processing

ALS6/16q12 autosomal recessive (adult onset) FUS Fused in sarcoma, component of heterogeneous nuclear ribonuclear
protein complex; RNA/DNA binding protein

ALS8/20q13.33 autosomal dominant (adult onset) VAPB VAMP-associated protein B/part of SNARE complex

2q13 autosomal dominant
(adult onset, atypical ALS)

DCTN1 Dynactin p150glued/axonal transport, link between dynein
and microtubule network

ALS10/1p36.22 autosomal dominant & sporadic
(adult onset)

TARDBP TAR DNA binding protein, DNA and RNA binding protein;
regulates RNA splicing

ALS11/6q21 autosomal recessive (adult onset) FIG4 FIG4 homolog, SAC1 lipid phosphatase domain containing;
regulates phosphotidylinositol turnover

ALS12/10p13 autosomal recessive & dominant
(adult onset)

OPTN Optineurin; inhibits NFκB activation

14q11.1-q11.2 susceptibility factor ANG Angiogenin; angiogenesis; stimulates production of rRNA

22q12.2 susceptibility factor NEFH Neurofilament, heavy polypeptide; neurofilament subunit

12q12-q13 susceptibility factor PRPH Peripherin; intermediate filament formation

5q13 susceptibility factor SMN1/SMN2 Survival motor neuron; RNA processing

7q36.6 susceptibility factor DPP6 Dipeptidyl-peptidase 6; S9B serine protease, binds voltage-gated
potassium channels

7q21.3 susceptibility factor for sporadic PON1 Paraoxonase; organophasphate pesticide/nerve agent detoxification

12q24.1 susceptibility factor for sporadic ATXN2 Ataxin-2; RNA processing
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excitotoxicity is secondary (Chang and Martin 2009; Chang
and Martin 2011). While many drugs targeting excitotoxicity
as a mechanism have failed in human ALS clinical trials, the
drug riluzole, a blocker of tetrodotoxin-sensitive sodium
channels, is currently approved by the Food and Drug
Administration for ALS treatment with marginal efficacy
(Zoccolella et al. 2009).

Markers of oxidative stress and ROS damage are elevated
in postmortem human ALS tissues (Beal 2002). In sporadic
and familial ALS, protein carbonyls are elevated in motor
cortex (Ferrante et al. 1997). Tyrosine nitration is elevated in
human ALS nervous tissues (Abe et al. 1995; Beal et al.
1997; Sasaki et al. 2000). Studies of respiratory chain
enzyme activities are discrepant. Experiments on autopsy
tissue have shown increases in complex I, II, and III
activities in vulnerable and non-vulnerable brain regions in
patients with familial ALS-mutant SOD1 (Browne et al.
1998), but experiments by others show decreased complex
IVactivity in spinal cord ventral horn (Borthwick et al. 1999)
and skeletal muscle (Vielhaber et al. 2000) of sporadic ALS
cases. In sporadic ALS skeletal muscle, reductions in activity
of respiratory chain complexes with subunits encoded by
mtDNA are associated with reduced mtDNA content
(Vielhaber et al. 2000) and decreased nitric oxide synthase
(NOS) levels (Soraru et al. 2007). Alterations in skeletal
muscle mitochondria are progressive (Echaniz-Laguna et al.
2006) and could be intrinsic to skeletal muscle and disease-
causing, as suspected in human SOD1 tg mice (Wong and
Martin 2010), rather than merely due to neurogenic atrophy,
as assumed commonly.

Mitochondrial-orchestrated programmed cell death
(PCD) involving p53 has been implicated in human ALS

PCD appears to contribute to the selective degeneration of
motor neurons in human ALS, albeit seemingly as a non-
classical form differing from apoptosis (Fig. 1) (Martin
1999; Martin and Liu 2004; Martin 2010a). Motor neurons
appear to pass through sequential stages of chromatolysis,
suggestive of initial axonal injury (Lieberman 1971),
somatodendritic attrition without extensive cytoplasmic
vacuolation, and then nuclear DNA fragmentation, nuclear
and chromatin condensation, and cell death (Fig. 1) (Martin
1999). Motor neurons in people that have died from
sporadic ALS and familial ALS show the same type of
degeneration (Martin 1999). This cell death in human
motor neurons is idefined by genomic DNA fragmentation
(determined by DNA agarose gel electrophoresis and in situ
DNA nick-end labeling) and cell loss and is associated with
accumulation of perikaryal mitochondria, cytochrome c,
and cleaved caspase-3 (Fig. 1h) (Martin 1999; Martin and
Liu 2004; Ginsberg et al. 2006). p53 protein also increases

in vulnerable CNS regions in people with ALS, and it
accumulates specifically in the nucleus of lower and upper
motor neurons with nuclear DNA damage (Fig. 1g) (Martin
2000; Martin et al. 2000). This p53 is active functionally
because it is phosphorylated at serine-392 and has increased
DNA binding activity (Martin et al. 2000). However, the
morphology of this cell death is distinct from classical
apoptosis, despite the nuclear condensation (Martin et al.
1998; Martin 1999; Martin 2010a). Nevertheless, Bax and
Bak1 protein levels are increased in mitochondria-enriched
fractions of selectively vulnerable motor regions (spinal
cord anterior horn and motor cortex gray matter), but not in
regions unaffected by the disease (somatosensory cortex
gray matter) (Martin 1999). In marked contrast, Bcl-2
protein is depleted severely in mitochondria-enriched
fractions of affected regions and is sequestered in the
cytosol (Martin 1999). Although these western blot results
lacked direct specificity for motor neuron events (Martin
1999), subsequent immunohistochemistry (Martin and Liu
2004) and laser capture microdissection of motor neurons
combined with mass spectroscopy-protein profiling (Ginsberg
et al. 2006) have confirmed the presence of intact active
caspase-3 in human ALS motor neurons.

Studies (Martin 1999; Martin 2000; Martin and Liu
2004) support the concept of an aberrant re-emergence of a
mitochondrial-directed PCD mechanism, involving p53
activation and redistributions of mitochondrial cell death
proteins, participating in the pathogenesis of motor neuron
degeneration in human ALS (Fig. 1). The morphological
and biochemical changes seen in human ALS are modeled
robustly and faithfully at morphological and molecular
levels in axonal injury/target deprivation (axotomy) models
of motor neuron degeneration in adult rodents (Martin et al.
2000; Martin et al. 2005) but not in the current most
commonly used human mutant SOD1 tg mouse models
(Martin and Liu 2004; Martin et al. 2007). However, a new
tg mouse expressing human mutant SOD1 only in skeletal
muscle develops a motor neuron disease phenotype with
morphological and biochemical changes very similar that
those seen in human ALS motor neurons (Wong and
Martin 2010).

Mitochondrial pathobiology in cell and mouse models
of ALS

A common genetic mutation in human SOD1 that is linked
to familial ALS (Table 1) is the substitution of glycine by
alanine at position 93 (G93A) (Turner and Talbot 2008).
SOD1 (also called Cu/Zn SOD) is a metalloenzyme of 153
amino acids (~16 kDa) that binds one copper ion and one zinc
ion per subunit and is active as a ~32 kDa non-covalently
linked homodimer (McCord and Fridovich 1969; Fridovich
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1995). SOD1 is responsible for the detoxification and
maintenance of intracellular O2

•- concentration in the low
femtomolar range by catalyzing its dismutation (McCord and
Fridovich 1969; Fridovich 1995). SOD1 is ubiquitous
(intracellular SOD concentrations are typically ~10-40
micromolar) in most tissues, possibly with highest levels in
neurons (Rakhit et al. 2004).

Cell culture experiments reveal mitochondrial dysfunction
in the presence of human mutant SOD1 (mSOD1) (Ferri et al.
2006). Expression of several mSOD1 variants increases
mitochondrial superoxide levels and causes toxicity in rat
primary embryonic motor neurons (Estévez et al. 1999),
human neuroblastoma cells (Flanagan et al. 2002), and
mouse neuroblastoma-spinal cord (NSC)-34 cells, a hybrid
cell line with some motor neuron-like characteristics pro-
duced by fusion of motor neuron-enriched embryonic mouse
spinal cord cells with mouse neuroblastoma cells (Bilsland et
al. 2008).These responses can be attenuated by over-
expression of MnSOD (Flanagan et al. 2002). ALS-
mSOD1 variants, compared to human wild-type SOD1,
associate more with mitochondria in NSC-34 cells and
appear to form cross-linked oligomers that shift the
mitochondrial GSH/GSSH ratio toward oxidation (Ferri et
al. 2006).

Gurney and colleagues were the first to develop tg mice
that express human mSOD1 (Gurney et al. 1994; Dal Canto
and Gurney 1994; Chiu et al. 1995). Now, these mice are
used widely as an animal model of ALS (Martin and Liu
2004; Turner and Talbot 2008). In the otiginal tg mice,
human mSOD1 was expressed ubiquitously driven by its
endogenous promoter in a tissue/cell non-selective pattern
against a background of normal wildtype mouse SOD1
(Gurney et al. 1994). Effects of this human mutant gene in
mice are profound. Hemizygous tg mice expressing high
copy number of the G93A variant of human SOD1 become
completely paralyzed and die at ~16–18 weeks of age
(Gurney et al. 1994). G93A-mSOD1 mice with reduced
transgene copy number have a much slower disease
progression and die at ~8–9 months of age (Gurney et al.
1994; Martin et al. 2009).

Spinal motor neurons and interneurons in mice expressing
G93Ahigh-mSOD1 undergo prominent degeneration; about
60%–80% of lumbar motor neurons are eliminated by end-
stage disease (Chiu et al. 1995; Mohajeri et al. 1998; Martin
et al. 2007). Subsets of spinal interneurons degenerate before
motor neurons in G93Ahigh-mSOD1 (Martin et al. 2007;
Chang and Martin 2009) and some are the glycinergic
Renshaw cells (Chang and Martin 2009). Unlike the
degeneration of motor neurons in human ALS (Martin
1999), motor neurons in G93Ahigh-mSOD1 mice do not
degenerate with a morphology resembling any form of
apoptosis or apoptosis-necrosis hybrids (Martin 2010a). The
motor neurons degeneration seen in G93Ahigh-mSOD1 mice

more closely resembles a prolonged necrotic-like cell death
process (Martin et al. 2007) involving early-occurring
mitochondrial damage, cellular swelling, and dissolution
(Kong and Xu 1998; Bendotti et al. 2001; Jaarsma et al.
2001; Sasaki et al. 2004). Biochemically, the death of motor
neurons in G93Ahigh-mSOD1 is characterized by cell body
and mitochondrial swelling and formation of DNA single-
strand breaks prior to double-strand breaks occurring in
nuclear DNA and mtDNA (Martin et al. 2007). The motor
neuron death in G93Ahigh-mSOD1 mice is independent of
activation of caspases-1 and −3, and also appears to be
independent of capsase-8 and AIF activation within motor
neurons (Martin et al. 2007). Indeed, caspase-dependent and
p53-mediated apoptosis mechanisms might be blocked
actively in G93Ahigh-mSOD1 mouse motor neurons, possibly
by up-regulation of inhibitors of apoptosis and changes in
the nuclear import of proteins (Martin et al. 2007). More
work is needed on the cell death and its mechanisms in
G93Alow-mSOD1 mice, because these mice could be more
relevant physiologically and preclinically to the human
disease compared to G93Ahigh-mSOD1 mouse.

Mitochondrial disease has been implicated in the mecha-
nisms of motor neuron degeneration in tg mSOD1 mouse
models, but until recently, most evidence has been circumstan-
tial. In different mSOD1 mouse models of ALS, mitochondria
in spinal cord neurons exhibit prominebt structural pathology
(Wong et al. 1995; Kong and Xu 1998; Bendotti et al. 2001;
Jaarsma et al. 2001; Sasaki et al. 2004; Martin et al. 2007),
and some of the mitochondrial degeneration occurs very early
in the course of the disease (Bendotti et al. 2001; Martin et al.
2007). Mitochondrial microvacuolar damage in motor neurons
is seen by electron microscopy at 4 weeks of age in G93Ahigh

mice (Martin et al. 2007). It has been argued that mitochon-
drial damage in G93Ahigh-mSOD1 mice is related to supra-
normal levels of SOD1 and might not be related causally to
the disease process because tg mice expressing high levels of
human wild-type SOD1 show some mitochondrial pathology
(Jaarsma et al. 2001), but mitochondrial abnormalities in
motor neurons have been found histologically also in
G93Alow-mSOD1 mice (Sasaki et al. 2004) and in mice with
only skeletal muscle expression of human SOD1 (Wong and
Martin 2010). Thus, mitochondria could be primary sites of
human SOD1 toxicity in tg mice irrespective of transgene
copy number, tissue expression, and expression level of
human SOD1, but direct, unequivocal causal relationships
have been lacking.

Mutated and wild-type forms of human SOD1 can cause
ALS in tg mice (Wong and Martin 2010). Human mSOD1
proteins appear to acquire a toxic property or function, rather
than having diminished O2

- scavenging activity (Deng et al.
1993; Borchelt et al. 1994; Yim et al. 1996). Wild-type
SOD1 can gain toxic properties through loss of Zn (Estévez
et al. 1999) and oxidative modification (Kabashi et al. 2007;
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Ezzi et al. 2007). A gain in aberrant oxidative chemistry
appears to contribute to the mechanisms of mitochondriop-
athy in G93Ahigh mice (Beckman et al. 1993; Liochev and
Fridovich 2003). G93A-mSOD1 has enhanced free radical-
generating capacity compared to wild-type enzyme (Yim et
al. 1996) and can catalyze protein oxidation by hydroxyl-like
intermediates and carbonate radical (Pacher et al. 2007).
G93Ahigh mice have increased protein carbonyl formation in
total spinal cord tissue extracts at pre-symptomatic disease
(Andrus et al. 1998). Protein carbonyl formation in mito-
chondrial membrane-enriched fractions of spinal cord is a
robust signature of incipient disease (Andrus et al. 1998). A
mass spectroscopy study of G93Ahigh mice identified
proteins in total spinal cord tissue extracts with greater than
baseline carbonyl modification, including SOD1, translation-
ally controlled tumor protein, and UCHL1 (Poon et al. 2005).
Nitrated and aggregated cytochrome c oxidase subunit-I
accumulate in G93Ahigh mouse spinal cord (Martin et al.
2007). Nitrated MnSOD accumulates also in G93Ahigh

mouse spinal cord (Martin et al. 2007). Toxic properties of
mSOD1 might also be mediated through protein binding or
aggregation. Endogenous mouse SOD1 (Okado-Matsumoto
and Fridovich 2001) and human wild-type SOD1 and
mSOD1 (Higgins et al. 2002) associate with mitochondria.
Human SOD1 mutants associate with spinal cord mitochon-
dria inmSOD1mice and can bind Bcl-2 (Pasinelli et al. 2004),
thus potentially being decoys or dominant negative regu-
lators of cell survival molecules, but it is not known if this
process is occurring specifically in motor neurons. This
observation is intriguing considering the finding that
mitochondrial Bcl-2 is depleted in human ALS (Martin
1999). Binding of mSOD1 (and perhaps its low-mobility
species) to mitochondria has been reported to be spinal
cord selective and age-dependent (Pasinelli et al. 2004),
but this work also lacks cellular resolution. A recent
biochemical in vitro study has shown that endogenous
SOD1 in the mitochondrial intermembrane space controls
cytochrome c-catalyzed peroxidation and that G93A-
mSOD1 mediates greater ROS production in the
intermembrane space compared to wild-type SOD1
(Goldsteins et al. 2008). Human SOD1 mutants can also
shift mitochondrial redox potential when expressed in
cultured cells (Ferri et al. 2006). Nevertheless, the direct
links between the physicochemical changes in wild-type
and mutant SOD1 and the mitochondrial functional and
structural changes associated with ALS and motor neuron
degeneration remain uncertain.

EM studies of motor neurons in G93Ahigh mice have
shown that the outer mitochondrial membrane (OMM)
remains relatively intact to permit formation of mega-
mitochondria (Kong and Xu 1998; Martin et al. 2007;
Martin et al. 2009). Moreover, early in the disease of these
mice, mitochondria in dendrites in spinal cord ventral horn

undergo extensive cristae and matrix remodeling, while few
mitochondria in motor neuron cell bodies show major
structural changes (Martin et al. 2009). Thus, disease
might start distally in mitochondria of motor neuron
processes (Martin et al. 2007; Martin et al. 2009). Another
interpretation of ultrastructural findings is that the mSOD1
causes mitochondrial degeneration by inducing OMM
extension and leakage and intermembrane space expan-
sion (Higgins et al. 2003). Mechanisms for this damage
could be related to mSOD1 gaining access to the
mitochondrial intermembrane space (Okado-Matsumoto
and Fridovich 2001; Higgins et al. 2002; Higgins et al.
2003). This mitochondrial conformation seen by EM
might favor the formation of the mitochondrial perme-
ability transition pore (Crompton 2004; Bernardi et al.
2006; Zorov et al. 2007); indeed, we found evidence for
increased contact sites between the OMM and IMM in
dendritic mitochondria in G93Ahigh mice (Martin et al.
2009). Another feature of motor neurons in young
G93Ahigh mice, before symptoms emerge, is apparent
fission of ultrastructurally normal mitochondria in cell
bodies and fragmentation of abnormal mitochondria
(Martin et al. 2009). It is not clear if the cristae and
matrix remodeling and the apparent fragmentation and
fission mitochondria are related or independent events and
if these abnormalities interfere with mitochondrial traf-
ficking; nevertheless, morphological observations enforce
the idea that mitochondria could be important to the
pathobiology of mSOD1 toxicity to motor neurons in
G93Ahigh mice.

We have hypothesized that mitochondrial trafficking
perturbations occur in motor neurons of mSOD1 (Martin et
al. 2007). Some data support the novel idea that mitochon-
dria might act as messengers from distal regions (axon
branches and dendrites) of motor neurons in mSOD1 mice.
G93Ahigh-mSOD1 mouse motor neurons accumulate mito-
chondria from the axon terminals and generate higher levels
of superoxide, nitric oxide (NO), and peroxynitrite
(ONOO-) than motor neurons in tg mice expressing human
wild-type SOD1 (Martin et al. 2007). This mitochondrial
accumulation occurs at a time when motor neuron cell body
volume is increasing, suggestive of ongoing abnormalities
with ATP production or plasma membrane Na+,K+ ATPase
(Martin et al. 2007). G93A-mSOD1 perturbs anterograde
axonal transport of mitochondria in cultured primary
embryonic motor neurons (De Vos et al. 2007) making it
possible that retrogradely transported mitochondria with
toxic properties from the neuromuscular junction fail to be
returned to distal processes (Martin et al. 2007). Mitochondria
with enhanced toxic potential from distal axons and
terminals could therefore have a “Trojan horse” role in
triggering degeneration of motor neurons in ALS via
retrograde transport from diseased skeletal muscle.
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Motor neurons in G93Ahigh-mSOD1 mice also accumulate
higher levels of intracellular Ca2+ than motor neurons in age-
match control mice (Martin et al. 2007). This finding could
be relevant to activation of the mitochondrial permeability
transition pore (Zoratti and Szabo 1995; Crompton 1999;
Leung and halestrap 2008). The intracellular Ca2+ signal in
motor neurons is very compartmental and mitochondrial-like
in its appearance (Martin et al. 2005; Martin et al. 2007).
Abnormal elevations of intracellular Ca2+ in G93Ahigh-
mSOD1 mouse motor neurons have been seen also by
different Ca2+ detection methods (Siklos et al. 1998; Jaiswal
and Keller 2009). Recent work on a mouse neuromuscular
junction preparation has shown that mitochondrial Ca2+

accumulation is accompanied by greater mitochondrial
depolarization, specifically within motor neuron terminals
of human mutant SOD1 tg mice (Nguyen et al. 2009).

NO signaling mechanisms in mitochondria of ALS mice
appear to be involved in the pathogenesis. Motor neurons
seem to be unique regarding NO production because they
express constitutively low levels of inducible NO synthase
(iNOS) (Martin et al. 2005; Martin et al. 2007; Chen et al.
2010). G93Ahigh-mSOD1 mouse motor neurons accumulate
nicotinamide adenine dinucleotide phosphate diaphorase and
iNOS-like immunoreactivity (Martin et al. 2007; Chen et al.
2010). iNOS is also up-regulated aberrantly in human
sporadic ALS motor neurons (Sasaki et al. 2000). iNos
(Nos2) gene knockout (Martin et al. 2007) and iNOS
inhibition with 1,400 W (Chen et al. 2010) extend signifi-
cantly the lifespan of G93Ahigh-mSOD1 mice. Thus,
mitochondrial oxidative stress, Ca2+ dysregulation, iNOS
activation, protein nitration, and protein aggregation (not
necessarily SOD1 aggregation) are all likely intrinsic, cell-
autonomous mechanisms in the process of motor neuron
degeneration caused by mSOD1 in mice (Chen et al. 2010).
The mechanistic basis for the differences between human
ALS and mSOD1 mice, regarding cell death phenotype
(Martin 2010a; Martin 2010b) is not yet clear, but could be
related to the extreme non-physiological expression of toxic
mSOD1 or to fundamental differences in cellular death
mechanisms in human and mouse neurons or tissue inflam-
mation that drive motor neurons in mSOD1 tg mice to
necrotic-like death according to the cell death matrix concept
(Martin 2010a). Another contributing factor for this difference
between human and mouse motor neurons is that mitochon-
dria are functionally diverse and have species-specific
activities and molecular compositions, including the makeup
of the mitochondrial permeability transition pore (Kunz
2003). These possibilities allow for skepticism regarding the
suitability of previous tgmSOD1mouse lines tomodel human
ALS. Therefore, we have recently created a tg mouse with
restricted expression of human SOD1 in skeletal muscle that
develop ALS with a motor neuron degeneration phenotype
similar to that seen in human ALS (Wong and Martin 2010).

The mPTP contributes to disease mechanisms in ALS
mice

Despite the implication of toxic effects of mSOD1 on
mitochondria in mouse ALS, cause-effect relationships
between abnormal functioning of mitochondria and initiation
and progression of disease have been uncertain. These
relationships need to be known because this knowledge could
lead to new mechanism-based treatments for ALS. One
specific therapeutic target of investigation for mitochondria
in disease causality in ALS is the mPTP (Martin 2010c).

ThemPTPwas first implicated in mouse ALS pathogenesis
using pharmacological approaches. Cyclopsorine A treatment
of G93Ahigh mice, delivered into the cerebral ventricle or
systemically to mice on a multiple drug resistance type 1a/b
background (to inactivate the blood-brain barrier), improved
outcome modestly (Keep et al. 2001; Karlsson et al. 2004;
Kirkinezos et al. 2004). These studies were confounded by
the immunosuppressant actions of cyclopsorine A through
calcineurin inhibition. Pharmacological studies using cyclo-
philin D (CyPD) inhibitors devoid of effects on calcineurin
need to be done on ALS mice. Another study showed that
treatment with cholest-4-en-3-one oxime (TRO19622), a
drug that binds the voltage-dependent anion channel
(VDAC) and the 18 kDa translocator protein (TSPO, or
peripheral benzodiazepine receptor), improved motor perfor-
mance, delayed disease onset, and extended survival of
G93Ahigh mice (Bordet et al. 2007). However, another study
using a different TSPO ligand (Ro-4864) did not show
positive effects with G93Ahigh mice (Mills et al. 2008).

We identified CyPD and the adenine nucleotide trans-
locator (ANT) as targets of nitration in ALSmice (Martin et al.
2009). CyPD nitration is elevated in early- to mid-
symptomatic stages, but declines to baseline at end-stage
disease (Martin et al. 2009). ANT nitration is pertinent
because it occurs in pre-symptomatic and symptomatic
stages but not at end-stage disease or in tg mice expressing
human wild-type SOD1 (Martin et al. 2009). The ANT is
important in the context of age-related neurodegenerative
disease because it undergoes carbonyl modification during
aging as seen in housefly flight muscle (Yan and Sohal 1998)
and rat brain (Prokai et al. 2007). In vitro cell-free and cell
experiments have shown that NO and ONOO- can act
directly on the ANT to induce mitochondrial permeabiliza-
tion in a cyclosporine A-sensitive manner (Vieira et al.
2001). Oxidative stress enhances the binding of CyPD to
ANT (McStay et al. 2002). Some SOD1 mutants are unstable
and lose copper (Trumbull and Beckman 2009), and
interestingly, copper interactions with ANT and thiol
modification of ANT can cause mPTP opening (Costantini
et al. 2000; García et al. 2007). Together these data and
future work could reveal that oxidative and nitrative damage
to proteins, some of which are components of the mPTP
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(Bernardi et al. 2006: Leung and Halestrap 2008), in
G93Ahigh mice is targeted rather than stochastic and could
impinge on the functioning of the mPTP.

We examined directly the role of CyPD in the process of
motor neuron disease in ALS mice through gene-ablation
(Martin et al. 2009). G93Ahigh-mSOD1 mice without CyPD
show markedly delayed disease onset and lived significant-
ly longer than tg mice with CyPD. The effect of CyPD
deletion was much more prominent in female mice than in
male mice (Martin et al. 2009). Female mice showed
positive effects with only haplo-deletion of CyPD. Ppif
gene ablation in tg mice with much lower levels of human
mSOD1 expression and a slower disease progression
(G93Alow-mSOD1 mice) also show significantly delayed
disease onset and lived significantly longer than tg mice with
CyPD (Martin et al. 2009). Thus, some form of mPTP
pathobiology is occurring regardless of whether transgene
expression of G93A is high or low.

Nevertheless, most G93A-mSOD1 mice without CyPD
develop eventually motor neuron disease and die. Other work
onCypD null mice has shown that high concentrations of Ca2+

(2 mM) can still lead to mPTP activation without CyPD
and that cell deaths caused by Bid, Bax, DNA damage
and TNF-α still occur without CyPD (Grimm and
Brdiczka 2007). The effects of CyPD deficiency on motor
neuron cell death mechanisms thus need detailed exami-
nation, but the cell death phenotype might switch or
convert to another form with the attenuation of mitochon-
drial swelling. A switch in the cell death morphology and
molecular mechanisms in motor neurons of mSOD1 mice
without CyPD is an outcome consistent with the cell death
matrix concept (Martin 2010a).
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